
Intro to 
Machine Learning!

(Starting 5:10)



Agenda

● Speaker Intros
● How does a machine learn?
● Buzzword clarifications
● Supervised vs Unsupervised vs Reinforcement Learning
● ML Models
● Neural Networks (Structure, Activation and Cost Functions, Gradient Descent, 

Backpropagation)
● Code Exercise Setup
● Code Exercise Walkthrough
● Q&A



Speaker Intros



Let’s Start with a Question

What does it mean for a 
Machine to LEARN?



How does a Computer LEARN?

● First we have to gather relevant data
● Then feed the data into our model, sample by sample
● We then compare our models output to the output we want and we adjust the 

many parameters (weights, biases) within the model so that it can output a 
more accurate answer on future iterations

● After repeated iterations, the model’s answers with each inputted sample will 
get better and better

● This is called Training the model
● This is how a computer learns (with supervised learning)



Buzzwords
Can you think of any you hear often?



AI vs ML vs Deep Learning vs Data Science

● AI 
○ Scientific field aimed at making machines act like 

humans

● ML 
○ Subset of AI focused on using computational 

models to allow computers to perform intelligent 
tasks without being explicitly programed to do so

● Deep Learning
○ Subfield of ML dedicated to the engineering, 

research, and use of neural networks 

● Data Science 
○ Field of statistics aimed at trying to find useful 

patterns and structures within data



Supervised Learning

● Uses LABELED training data
● Each input in the data set has a corresponding output allowing us to measure 

how well our model is performing
● Usually used to solve two main types of problems:

○ Classification problems
○ Regression problems



Supervised Learning Cont.

Classification: Regression:



Unsupervised Learning

● Uses non-labeled data
● There are no output labels to allow us to check how our model is doing
● Usually used to find patterns, structures, relationships within your data
● Used to solve problems like:

○ Clustering
○ Anomaly Detection
○ Association Rule Mining
○ etc.



Reinforcement Learning

● Involves an agent that can interact 
with the world in ways that can give 
a reward 

● The agent is tasked with exploring 
its environment to find ways to 
maximize the reward

● Does not require a data set
● Similar to how we would train a dog
● Can be used to for:

○ Robotics
○ Game playing (Chess, Go, Dota 2, etc)
○ Self driving 



ML Models

● A machine learning model is an algorithm (or set of algorithms) and 
parameters that the computer uses to learn

● The model takes in input data, gives an output, and adjusts its parameters to 
make itself more accurate

● The models we use are problem specific i.e. some models are good at certain 
problems while others are not

● Model examples:
○ Linear Regression: Fitting a linear equation to data, used in predicting stock prices, home 

prices, etc
○ K-Nearest Neighbors (KNN): Clusters data points into groups based on similar features, used 

for classification and regression
○ Decision Trees: Tree-like structure, used for both classification and regression
○ Neural Networks: Used in deep learning models for image recognition, NLP, etc.



Neural Networks: Structure

● Structure inspired by the human brain 
hence the term ‘neural’

● Each circle is called a ‘neuron’
● Neurons are arranged in columns 

called layers
● Each neuron in one layer is connected 

to every neuron in the following layer
● Usually always 1 input and 1 output 

layer
● We can have many hidden layers 

(depth)
● There’s typically many more neurons 

in in the layers than shown in the 
diagram



Neural Networks: Structure Cont.

● Neurons can ‘fire’ with values from 
0-1

● Specific groups of neurons firing at 
the same time cause neurons in 
the next layer to fire

● Each connection between neurons 
has a ‘weight’ describing how much 
a neuron activation affects the 
activation of the adjacent neuron

● Each neuron also has a value to 
act as a ‘bias’ against activation so 
a neuron only fires after a certain 
threshold



Neural Networks: Activation Functions

● The activation function is a function that 
gives the activation for a single neuron

● It takes in as input, the sum of the 
weighted activations of all the neurons in 
the previous layer + bias

● If Z is the input to the activation function, 
then we get:

Z = w1x1 + w2x2 + w3x3 + ... + b

Where wn and xn is the weight and 
activation for input neuron n respectively, 
and b is the bias for the current neuron

Example: Rectified Linear Unit 
activation function (ReLU)



Neural Networks: Activation Functions Cont.

● Each Neuron can be thought of as 
a function

● Each neuron takes in the weights 
and activations of the neurons in 
the previous layer then adds in its 
bias and outputs its own activation 
value using the activation function

● Multiple different activation 
functions can be used for different 
problems 



Neural Networks: Cost Functions

● The ‘Cost function’ is used to quantify how well our models outputs match the 
correct output values

● Can also be referred to as ‘Loss Functions’
● We use the Cost function to see how well our model is doing and use that 

metric to guide the optimization of the parameters (weights, biases) of our 
model

● Examples of Cost Functions:
○ Mean Squared Error (MSE)
○ Binary Cross-Entropy Loss (Log Loss)
○ Negative Log-Likelihood (NLL)



Neural Networks: Cost Functions Cont.

● Cost functions take as input ALL the weights and biases of the neural network
● Then run all the training data on the model using the given weights/biases
● Then output a single value called the ‘Cost’ which represents how good/bad 

our model is at outputting the correct answers
● A higher cost value implies a larger difference between the models outputs 

and the correct outputs
● A lower cost value implies a smaller difference between the models outputs 

and the correct outputs
● The goal is to minimize the Cost function by adjusting the weights and biases 

of our model
● Minimizing Cost function == LEARNING



Neural Networks: Minimizing Cost

● If we want our model to perform 
better, we need to minimize our 
Cost function

● Similar to high school Calculus 
‘finding minimum of the function’ 
type of questions

● Unfortunately when we’re dealing 
with a large number of inputs to our 
function, it’s much harder to find 
local minima

● We require another approach



Neural Networks: Minimizing Cost Cont.
● One common approach is called 

‘Gradient Descent’
● Gradient Descent involves 

finding a direction that we can 
move to that lowers cost 

● Once we find the Gradient, we 
use it to go backwards in our 
neural network to update the 
weights and biases

● Going backwards in our network 
to update the weights and biases 
is called ‘Backpropagation’

● We repeat this until we get to the 
local minimum



PyTorch

● What is PyTorch?
● An open-source machine learning framework.
● Developed by Facebook's AI Research lab (FAIR).

● Key Features:
● Dynamic computational graph.
● Pythonic and flexible.
● Excellent support for deep learning.

● Popularity:
● Widely adopted in research and industry.
● Preferred by researchers and practitioners for its flexibility.

● Use Cases:
● Deep learning research.
● Computer vision, natural language processing, reinforcement learning, and more.



Handwritten Digit Recognition

● We will be using the MNIST data set for testing and training
○ The MNIST data set contains lots of handwriting samples
○ Each image is 28x28 in dimension *

● This is supervised learning for a classification task.

● There are six tasks for you to complete, 4 of them in main.py and 2 in extract.py

● Please work with others but do not give the answers to everyone!!
● Feel free to ask for help.



Code Exercise Setup

1. Open Powershell (Windows) or Terminal (Mac) AS ADMIN if possible
2. Enter ‘python --version’ and make sure version >=3.9
3. If you have an older version, download and install latest python version
4. In your Powershell/Terminal, Enter ‘pip install poetry’ and make sure it downloads 

successfully
5. Go to the link https://t.ly/PoBkE -> Click ‘Code’ -> Click ‘Download ZIP’ and unzip the file
6. Copy the file path that goes to files within the unzipped digit-recognition-main folder

Windows example file path: 
C:\Users\Name\Downloads\digit-recognition-main\digit-recognition-main\

7. In your Powershell/Terminal, Enter ‘cd FILE_PATH’ where FILE_PATH is the path you 
copied earlier 

8. Enter ‘poetry install’ and make sure it completes successfully
9. Enter ‘poetry shell’

10. Then enter ‘python main.py --help’ to get the full list of commands

https://t.ly/PoBkE


Q&A



Thanks for Attending!


